Saturday 14 October 2017

Rmse Media Móvil


Media móvil / raiz media cuadrada normalizar im buscando una característica que creo que se llama quotmoving averagequot o quotroot mean squarequot (rms) normalización, aunque admito que no soy el más audio-savvy. Lo que id como es normalizar la voz a un nivel coherente y no sólo al sonido más fuerte en la grabación. Encontré a esta persona preguntando sobre lo que creo que es lo mismo antes, y alguien sugirió usar plugins de nyquist: - audacity-forum. de/download/edgar/nyquist/nyquist-doc/nyquist. htm También encontré este quotfir10.nyquot Script, que sospecho que podría ser lo que estoy buscando, pero no puedo decir con seguridad: - n2.nabble / text-version-de-fir10.ny-td238442.html ¿alguien sabe si esta característica existe, o si los desarrolladores están trabajando en Que yo podría tratar de ayudar también - tengo una cuestión no relacionada (pipa sueño). Hago un poco de trabajo en una estación de radio de campus en Canadá, que utilizan soundforge para hacer su edición. ¿Habría algún punto para mí tratando de convencerlos ya otras estaciones de radio de campus de tomar el dinero que gastan en licencias soundforge y desviarlo en el desarrollo audacity hay alguna infraestructura para recibir ese tipo de dinero de una manera responsable y transparente de nuevo, esto Es probablemente un sueño de pipa, no estoy seguro de identificación realmente ser capaz de convencer a nadie, pero creo que vale la pena preguntar. Gracias por su tiempo todo el mundo, macho Abrir este mensaje en la vista de rosca Reporte de contenido como inapropiado Re: media móvil / raya media cuadrado normalizar Macho Philipovich escribió im buscando una característica que creo que se llama quotmoving averagequot o quotroot mean squarequot (rms) Aunque admito que no soy el más audio-savvy. Lo que id como es normalizar la voz a un nivel coherente y no sólo al sonido más fuerte en la grabación. Encontré a esta persona preguntando sobre lo que creo que es lo mismo antes, y alguien sugirió usar plugins de nyquist: - audacity-forum. de/download/edgar/nyquist/nyquist-doc/nyquist. htm También encontré este quotfir10.nyquot Script, que sospecho que podría ser lo que estoy buscando, pero no puedo decir con seguridad: - n2.nabble / text-version-de-fir10.ny-td238442.html ¿alguien sabe si esta característica existe, o si los desarrolladores están trabajando en Que podría tratar de ayudar Para una respuesta definitiva sobre las capacidades de Nyquist debe suscribirse a la lista de Nyquist y pedir allí: lists. sourceforge. net/lists/listinfo/audacity-nyquist pero en la medida en que mi comprensión muy limitada va, el Nyquist Quotnormalizequot función es la normalización pico. Audacity no realiza la normalización de RMS, y no tenemos planes inmediatos para implementarlo a menos que alguien nos convenza de que necesitamos esto dentro de Audacity y proporciona un parche. Sin embargo, puede obtener una idea muy aproximada del nivel RMS del audio en Audacity usando el menú desplegable de pistas para cambiar a la vista de forma de onda (dB) y mirar el nivel de la parte azul claro de la forma de onda, que es la potencia RMS . En Audacity Beta 1.3.7 puede obtener una medición del RMS promedio de cualquier selección en Analyze gt Contrast (buscar en el cuadro quotVolumequot). La normalización RMS puede acabar dando clipping en una pista tranquila que tiene sólo unas pocas secciones mucho más fuertes que el resto, porque el promedio será muy bajo y sugieren un aumento de volumen grande es necesario. Así que algunos normalizadores RMS añadir limitación, lo que significa que pierde el rango dinámico. Si su audio está en un formato que soporta ampliamente las etiquetas de metadatos (MP3, OGG, FLAC pero no WAV o AIFF), puede analizar el audio con el software que escribirá información de quotReplay Gainquot En las etiquetas. Repetición Gain permite al usuario establecer un quottargetquot volumen percibido. Este objetivo no es un objetivo para la amplificación máxima, ni aplica compresión, sino que es un objetivo para casi todo el volumen de reproducción percibido. Cuando reproduce un archivo con datos de reproducción de ganancia en un reproductor de medios que lo admita, el volumen de reproducción de audio se ajustará para que el volumen percibido se encuentre en el destino especificado. Si escribes todos tus archivos de audio con Replay Gain ajustado al mismo nivel de objetivo, todos sonarán sobre el mismo volumen sin tener que tocar los controles de volumen para hacerlos sonar como tales. Por ejemplo, si exporta desde Audacity como MP3, puede utilizar MP3Gain mp3gain. sourceforge. net/faq. phpstart para escribir la información de Replay Gain en el archivo. El archivo no se vuelve a codificar, por lo que no se pierde más calidad que la compresión original de MP3. Una posible solución para los archivos WAV está aquí (esto no volver a codificar el archivo): members. home. nl/w. speek/wavegain. htm gt tengo una pregunta no relacionada (pipa sueño). Hago un poco de trabajo en una estación de radio del campus del gt en Canadá, que utilizan soundforge para hacer su edición. Gt habría algún punto a mí tratando de convencerlos y otras estaciones de radio de campus gt para tomar el dinero que gastan en licencias de soundforge y gt desviarlo en el desarrollo de audacia hay alguna infraestructura para recibir ese tipo de dinero de una manera responsable y transparente Usted ciertamente podría hacer la estación de radio consciente de Audacity y ver si ellos estarían buscando algo específico a cambio de una contribución financiera. Y siempre abierto en principio al patrocinio de nuevas características: audacityteam. org/sponsor. php En la práctica, el patrocinio que hemos recibido hasta ahora ha sido un pequeño número de patrocinios de la compañía para las versiones de Audacity de marca / personalizadas. Además, todos somos voluntarios y existe la cuestión de que los individuos tengan tiempo para asumir proyectos pagados. Si usted o la estación de radio desean discutir contribuciones financieras, le sugiero que se suscriba a nuestra lista de correo de desarrolladores: lists. sourceforge. net/lists/listinfo/audacity-devel y suba allí cuando tenga alguna propuesta concreta o preguntas sobre tales. Un antiguo término de advertencia que lleva la amenaza de daño en el peor, e incertidumbre en el mejor de los casos, a aquellos dentro del rango de potencial. Cast 133 que sirve un proyectil a lo invisible y por lo general desconocido por debajo de la previsión de superficie engañosa. . Una advertencia para quienes la usan. Una confesión de incertidumbre (o engaño) por parte de quienes la crean. Una amenaza de daño a los que están en su camino De Tom Brown en Aprovechar al máximo el pronóstico 2.1: Introducción a la predicción Aunque los métodos cuantitativos de negocios pueden ser estudiados como módulos independientes, creo que es apropiado que el texto coloque el material de pronóstico inmediatamente después análisis de decisión. Recordemos en nuestros problemas de análisis de decisiones, los estados de naturaleza generalmente se refieren a niveles variables de demanda o alguna otra variable desconocida en el futuro. Predecir, con cierta medida de precisión o confiabilidad, cuáles serán esos niveles de demanda será nuestro próximo tema. Las previsiones son más que simples extrapolaciones de datos pasados ​​en el futuro utilizando fórmulas matemáticas o recopilando tendencias de expertos133. Los pronósticos son mecanismos para llegar a medidas para planificar el futuro. Cuando se hace correctamente, proporcionan una pista de auditoría y una medida de su exactitud. Cuando no se hace correctamente, nos recuerdan a Tom Browns desglose inteligente del término repetido en la apertura de estas notas. No sólo las previsiones nos ayudan a planificar, sino que nos ayudan a ahorrar dinero. Tengo conocimiento de una empresa que redujo su inversión en inventario de 28 millones a 22 millones mediante la adopción de un método de pronóstico formal que redujo el error de pronóstico en 10. Este es un ejemplo de previsiones Ayudando a las compañías de productos a reemplazar el inventario con información, lo que no solo ahorra dinero sino que mejora la respuesta y el servicio al cliente. Cuando usamos el término pronóstico en un curso de métodos cuantitativos, generalmente nos referimos a métodos cuantitativos de predicción de series temporales. Estos modelos son apropiados cuando: 1) se dispone de información anterior sobre la variable que se está pronosticando, 2) se puede cuantificar la información, y 3) se supone que los patrones de los datos históricos continuarán en el futuro. Si los datos históricos están restringidos a valores pasados ​​de la variable de respuesta de interés, el procedimiento de pronóstico se denomina método de series de tiempo. Por ejemplo, muchas previsiones de ventas se basan en los métodos clásicos de series de tiempo que cubriremos en este módulo. Cuando el pronóstico se basa en ventas anteriores, tenemos una previsión de series de tiempo. Una nota lateral: aunque he dicho que las ventas por encima, siempre que sea posible, tratamos de pronosticar las ventas en función de la demanda pasada en lugar de las ventas133 por qué Supongamos que posee una tienda de camisetas en la playa. Usted almacena 100 Spring Break 2000 camisetas preparándose para las vacaciones de primavera. Supongamos además que 110 Spring Breakers ingresan a su tienda para comprar las camisetas Spring Break 2000. ¿Cuáles son sus ventas? Eso es correcto, 100. Pero ¿cuál es su demanda de nuevo, 110. Usted desea utilizar la cifra de demanda, en lugar de la cifra de ventas, en la preparación para el próximo año como las cifras de ventas no capturar sus salidas de stock. Entonces, ¿por qué muchas empresas hacen previsiones de ventas basadas en las ventas pasadas y no en la demanda? La razón principal es el costo: las ventas se capturan fácilmente en la estación de salida, pero necesita una característica adicional en su sistema de información de gestión para capturar la demanda. Volver a la introducción. La otra categoría principal de métodos de pronóstico que se basan en datos pasados ​​son modelos de regresión. A menudo denominados modelos causales como en nuestro texto. Estos modelos basan su predicción de los valores futuros de la variable de respuesta, por ejemplo las ventas, en variables relacionadas como el ingreso personal disponible, el género y quizás la edad del consumidor. Estudia modelos de regresión en el curso de estadística, por lo que no los cubriremos en este curso. Sin embargo, quiero decir que debemos usar el término causal con precaución, ya que la edad, el género o el ingreso personal disponible pueden estar muy relacionados con las ventas, pero la edad, el género o el ingreso personal disponible no pueden causar ventas. Sólo podemos probar la causalidad en un experimento. La categoría principal final de modelos de predicción incluye métodos cualitativos que generalmente implican el uso de juicios de expertos para desarrollar el pronóstico. Estos métodos son útiles cuando no tenemos datos históricos, como el caso cuando estamos lanzando una nueva línea de productos sin experiencia previa. Estos métodos también son útiles cuando estamos haciendo proyecciones en un futuro lejano. Vamos a cubrir uno de los modelos cualitativos en esta introducción. En primer lugar, vamos a examinar un esquema de clasificación simple para las directrices generales en la selección de un método de previsión, y luego cubrir algunos principios básicos de la previsión. Selección de un método de pronóstico La siguiente tabla ilustra las pautas generales para seleccionar un método de pronóstico basado en criterios de tiempo y propósito. Proyección de tendencia Media móvil Suavización exponencial Por favor entienda que estas son pautas generales. Usted puede encontrar una empresa que utiliza la proyección de la tendencia para hacer pronósticos fiables para las ventas de productos de 3 años en el futuro. También hay que señalar que dado que las empresas utilizan paquetes de previsión de series temporales de software informático en lugar de cálculos manuales, pueden probar varias técnicas diferentes y seleccionar la técnica que tenga la mejor medida de precisión (el error más bajo). Al discutir las diferentes técnicas, y sus propiedades, suposiciones y limitaciones, espero que obtendrá una apreciación para el esquema de clasificación anterior. Principios de predicción Los esquemas de clasificación como el anterior son útiles para ayudar a seleccionar los métodos de pronóstico apropiados para el tiempo y el propósito a la mano. También hay algunos principios generales que deben ser considerados cuando preparamos y usamos pronósticos, especialmente aquellos basados ​​en métodos de series de tiempo. Oliver W. Wight en Producción y Control de Inventario en la Era Computacional. Y Thomas H. Fuller en Microcomputadores en Producción y Gestión de Inventario desarrolló un conjunto de principios para la producción y la comunidad de control de inventario hace un tiempo que creo que tienen aplicación universal. 1. A menos que el método sea 100 exacto, debe ser lo suficientemente simple para que las personas que lo usan lo entiendan inteligentemente (lo entiendan, lo expliquen y lo replicen). 2. Toda previsión debe ir acompañada de una estimación del error (la medida de su exactitud). 3. Las previsiones a largo plazo deben abarcar el mayor número posible de partidas que restrinjan las previsiones individuales a corto plazo. 4. El elemento más importante de cualquier esquema de pronóstico es esa cosa entre el teclado y la silla. El primer principio sugiere que usted puede conseguir con el tratamiento de un método de pronóstico como una caja negra, siempre y cuando sea 100 precisión. Es decir, si un analista simplemente introduce datos históricos en la computadora y acepta e implementa la salida de pronóstico sin ninguna idea de cómo se hicieron los cálculos, ese analista está tratando el método de pronóstico como una caja negra. Esto está bien siempre y cuando el error de pronóstico (observación real - observación pronosticada) sea cero. Si el pronóstico no es confiable (alto error), el analista debe estar, al menos, muy avergonzado por no ser capaz de explicar lo que salió mal. Puede haber consecuencias mucho peores que la vergüenza si los presupuestos y otros eventos de planificación se basan en gran medida en el pronóstico erróneo. El segundo principio es realmente importante. En la sección 2.2 se presentará una forma sencilla de medir el error de pronóstico, la diferencia entre lo que realmente ocurre y lo que se preveía que ocurriera para cada período de tiempo de pronóstico. Aquí está la idea. Supongamos que una compañía de automóviles predice las ventas de 30 coches el próximo mes usando el método A. El método B también viene con una predicción de 30 coches. Sin saber la medida de exactitud de los dos Métodos, seríamos indiferentes en cuanto a su selección. Sin embargo, si supiéramos que el error compuesto para el Método A es de - 2 coches en un horizonte de tiempo relevante y el error compuesto para el Método B es de - 10 coches, seleccionaríamos el Método A sobre el Método B. ¿Por qué un método tendría Tanto error comparado con otro Eso será uno de nuestros objetivos de aprendizaje en este módulo. Puede ser porque usamos un método de suavizado en lugar de un método que incorpora la proyección de tendencias cuando no deberíamos tener - como cuando los datos muestran una tendencia de crecimiento. Los métodos de suavizado, como el suavizado exponencial, siempre demoran las tendencias, lo que resulta en un error de pronóstico. El tercer principio podría ser mejor ilustrado por un ejemplo. Supongamos que usted es Director de Operaciones de un hospital y usted es responsable de prever la demanda de camas para pacientes. Si su previsión iba a ser para la planificación de la capacidad en tres años a partir de ahora, es posible que desee pronosticar el total de camas de pacientes para el año 2003. Por otro lado, si usted iba a pronosticar la demanda de camas de pacientes para abril de 2000, , Entonces usted necesitaría hacer pronósticos por separado para las camas del paciente de la sala de emergencia, camas del paciente de la recuperación de la cirugía, camas del paciente de OB, y así sucesivamente. Cuando se requiere mucho detalle, se adhieren a un horizonte de pronóstico a corto plazo para agregar sus líneas de productos / tipo de pacientes / etc. Cuando se hacen pronósticos a largo plazo. Esto generalmente reduce el error de pronóstico en ambas situaciones. Deberíamos aplicar el último principio a cualquier método cuantitativo. Siempre hay espacio para ajustes de juicio a nuestras previsiones cuantitativas. Me gusta esta cita de Alfred North Whitehead en An Introduction to Mathematics. No hay más error común que suponer que, debido a cálculos matemáticos prolongados y precisos, la aplicación del resultado a algún hecho de la naturaleza es absolutamente cierta. Por supuesto, el juicio puede ser apagado también. ¿Qué tal este pronóstico hecho en 1943 por el presidente de IBM, Thomas Watson: Creo que hay un mercado mundial de unos cinco ordenadores. Cómo podemos mejorar la aplicación del juicio Ése es nuestro próximo tema. El método Delphi de pronóstico El método Delphi de pronóstico es una técnica cualitativa popularizada por la Corporación Rand. Pertenece a la familia de técnicas que incluyen métodos como Grass Roots, Panel de Investigación de Mercados, Analogía Histórica, Juicio Experto y Composición de Fuerza de Ventas. La cosa en común con estos enfoques es el uso de las opiniones de los expertos, en lugar de datos históricos, para hacer predicciones y pronósticos. Los temas de estas previsiones son típicamente la predicción de desarrollos políticos, sociales, económicos o tecnológicos que podrían sugerir nuevos programas, productos o respuestas de la organización que patrocina el estudio Delphi. Mi primera experiencia con las técnicas de predicción de juicio de expertos fue en mi última asignación durante mi pasada carrera en la Fuerza Aérea de los Estados Unidos. En esa asignación, fui Director de Programas de Transporte en el Pentágono. Una vez al año, mi jefe, el Director de Transporte, reuniría a líderes de alto nivel (y sus oficiales de acción) en una conferencia para formular planes y programas de transporte para los próximos cinco años. Estos programas se convirtieron entonces en la base para la presupuestación, adquisición, etc. Uno de los ejercicios que hicimos fue un Método Delphi para predecir desarrollos que tendrían un impacto significativo en los programas de Transporte de la Fuerza Aérea. Recuerdo que uno de los desarrollos que predijimos en una conferencia a principios de los 80 fue el acelerado movimiento de los sistemas de transporte estratégico descentralizado a centralizado en el ejército. Como resultado, comenzamos a posicionar a la Fuerza Aérea para el comando de transporte unificado varios años antes de que se hiciera realidad. Paso 1. El Método Delphi de Pronóstico, al igual que las otras técnicas de juicio, comienza con la selección de los expertos. Por supuesto, aquí es donde estas técnicas pueden fallar - cuando los expertos no son realmente expertos en absoluto. Tal vez el jefe se incluye como un experto para el estudio Delphi, pero mientras que el jefe es grande en la gestión de los recursos, él o ella puede ser terrible en la lectura del entorno y la predicción de los desarrollos. Paso 2. El primer paso formal es obtener un pronóstico anónimo sobre el tema de interés. Esto se llama Ronda 1. En este caso, se pedirá a los expertos que proporcionen un desarrollo político, económico, social o tecnológico de interés para la organización que patrocina el Método Delphi. Los pronósticos anónimos pueden ser recolectados a través de un Sitio Web, por correo electrónico o por medio de un cuestionario. También pueden ser reunidos en un grupo vivo, pero el efecto halo puede sofocar el flujo libre de las predicciones. Por ejemplo, sería común que el grupo de expertos reunidos en el Pentágono incluya oficiales generales. Varios de los generales eran grandes líderes en el campo, pero no grandes visionarios cuando se trataba de desarrollos logísticos. Por otra parte, sus oficiales de la acción de teniente coronel eran muy buenos pensadores y sabían mucho sobre lo que estaba en el horizonte para los sistemas de la logística y del transporte. Sin embargo, debido al clásico respeto por el rango, los oficiales más jóvenes podrían no haber sido próximos si no usamos un método anónimo para obtener la primera ronda de pronósticos. Paso 3. El tercer paso en el Método Delphi implica que el facilitador del grupo resuma y redistribuya los resultados de los pronósticos de la Primera Ronda. Esto es típicamente una lista de lavandería de los desarrollos. A continuación se les pide a los expertos que respondan a la lista de lavandería de la primera ronda indicando el año en que creyeron que se produciría el desarrollo o declarar que este desarrollo nunca ocurrirá. Esto se llama Ronda 2. Paso 4. El cuarto paso, Ronda 3. Implica que el facilitador del grupo resuma y redistribuya los resultados de la Segunda Ronda. Esto incluye una presentación estadística simple, típicamente la mediana y el rango intercuartílico, para los datos (años que un desarrollo ocurrirá) de la Ronda 2. El resumen también incluiría el porcentaje de expertos informando que nunca ocurre para un desarrollo en particular. En esta ronda, se pide a los expertos que modifiquen, si lo desean, sus predicciones. Los expertos también tienen la oportunidad de presentar argumentos que desafían o apoyan las predicciones nunca ocurridas para un desarrollo en particular, y desafiar o apoyar los años fuera del intervalo intercuartílico. Paso 5. El quinto paso, Ronda 4. Repite la ronda 3 - los expertos reciben una nueva pantalla estadística con argumentos - y se les pide que proporcionen nuevos pronósticos y / o contra argumentos. Paso 6. La ronda 4 se repite hasta que se forme un consenso o, al menos, una difusión relativamente estrecha de opiniones. Mi experiencia es que para la Ronda 4, tuvimos una buena idea de los desarrollos en los que deberíamos enfocarnos. Si el objetivo original del Método Delphi es producir un número en lugar de una tendencia de desarrollo, entonces la Ronda 1 simplemente pide a los expertos su primera predicción. Esto podría ser para predecir la demanda de productos para una nueva línea de productos para una compañía de productos de consumo o para predecir el DJIA un año para una compañía de fondos de inversión que gestiona un fondo de índice blue chip. Vamos a hacer un ejercicio de diversión (no clasificado y puramente voluntario) Delphi. Supongamos que usted es un experto en el mercado y desea unirse a los otros expertos de nuestra clase para predecir lo que el DJIA será el 16 de abril de 2001 (lo más cerca posible de la fecha de vencimiento del impuesto). Publicaré un tema de la conferencia denominado DJIA Predictions en el curso Web Board, dentro de la conferencia del Módulo 2. Por favor responda a ese tema de la conferencia simplemente declarando qué piensa que el DJIA cerrará el 16 de abril de 2001. Por favor, responda antes del 27 de enero de 2001, para poder publicar las estadísticas de resumen antes de dejar el material de pronóstico el 3 de febrero. Ahora comenzaremos nuestra discusión de los métodos cuantitativos de predicción de series temporales. 2.2: Métodos de Suavizado En esta sección queremos cubrir los componentes de una serie de tiempo naive, media móvil y métodos de suavización exponencial de pronóstico y medición de precisión de pronóstico para cada uno de los métodos introducidos. Pausa y reflexión Recuerde que hay tres clases generales de modelos de predicción o predicción. Métodos cualitativos, incluyendo el Delphi, se basan en el juicio de expertos y la opinión, no los datos históricos. Los modelos de regresión se basan en información histórica sobre las variables predictoras y la variable de respuesta de interés. Los métodos cuantitativos de predicción de series temporales se basan en la información numérica histórica sobre la variable de interés y asumen que los patrones en el pasado continuarán en el futuro. Esta sección comienza nuestro estudio de los modelos de series temporales, comenzando con patrones o componentes de series temporales. Componentes de una serie temporal Los patrones que podemos encontrar en una serie temporal de datos históricos incluyen los componentes medios, tendenciales, estacionales, cíclicos e irregulares. El promedio es simplemente la media de los datos históricos. Tendencia describe el crecimiento real o la disminución de la demanda media u otra variable de interés, y representa un cambio en el promedio. El componente estacional refleja un patrón que se repite dentro del tiempo total de interés. Por ejemplo, hace 15 años en el suroeste de la Florida, el tráfico aéreo fue mucho más alto en enero-abril, alcanzando su máximo en marzo. Octubre fue el mes bajo. Este patrón estacional se repitió hasta 1988. Entre 1988 y 1992, enero-abril continuó repitiéndose cada año como meses altos, pero los picos no eran tan altos como antes, ni los valles fuera de temporada tan bajos como antes, para deleite de El hotel y el turismo. El punto es que los picos estacionales se repiten dentro del período de interés - generalmente temporadas mensuales o trimestrales dentro de un año, aunque puede haber estacionalidad diaria en el mercado de valores (los lunes y los viernes muestran mayores promedios de cierre que los martes - jueves) como ejemplo. El componente cíclico muestra valores recurrentes de la variable de interés por encima o por debajo de la línea de tendencia media o de largo plazo en un horizonte de planificación plurianual. La longitud de los ciclos no es constante, como ocurre con la longitud de los picos y valles estacionales, haciendo los ciclos económicos mucho más difíciles de predecir. Dado que los patrones no son constantes, los modelos de variables múltiples, tales como los modelos de regresión econométricos y múltiples, son más adecuados para predecir puntos de cambio cíclicos que los modelos de series temporales. El último componente es lo que queda El componente irregular es la variación aleatoria en la demanda que es inexplicable por el promedio, la tendencia, los componentes estacionales y / o cíclicos de una serie de tiempo. Al igual que en los modelos de regresión, tratamos de hacer la variación al azar tan baja como sea posible. Los modelos cuantitativos están diseñados para abordar los diversos componentes cubiertos anteriormente. Obviamente, la técnica de proyección de tendencia funcionará mejor con series de tiempo que exhiben un patrón de tendencias históricas. La descomposición de series temporales, que descompone la tendencia y los componentes estacionales de una serie temporal, funciona mejor con series de tiempos con tendencias y patrones estacionales. ¿De dónde sale eso de nuestro primer conjunto de técnicas, métodos de alisado En realidad, los métodos de alisado funcionan bien en presencia de componentes medios e irregulares. Comenzamos con ellos a continuación. Antes de empezar, vamos a obtener algunos datos. Esta serie de tiempo consiste en la demanda trimestral de un producto. Los datos históricos están disponibles durante 12 trimestres, o tres años. La tabla 2.2.1 proporciona la historia. La figura 2.2.1 proporciona un gráfico de las series temporales. Este gráfico se preparó en Excel utilizando el asistente de gráfico Chart Pliers de Chart Wizards. No es importante qué software se utiliza para graficar las series temporales históricas, pero es importante examinar los datos. Incluso hacer un dibujo de lápiz y papel es útil para obtener una idea de los datos, y ver si puede haber tendencia y / o componentes estacionales en la serie de tiempo. Método del promedio móvil Una técnica simple que funciona bien con datos que no tiene tendencia, estacionalidad ni componentes cíclicos es el método del promedio móvil. Es cierto que este ejemplo de conjunto de datos tiene tendencia (observe la tasa de crecimiento global del período 1 al 12) y la estacionalidad (observe que cada tercer trimestre refleja una disminución de la demanda histórica). Pero permite aplicar la técnica de media móvil a estos datos por lo que tendrá una base para la comparación con otros métodos más adelante. Un pronóstico de media móvil de tres periodos es un método que toma tres periodos de datos y crea un promedio. Ese promedio es el pronóstico para el próximo período. Para este conjunto de datos, el primer pronóstico que podemos calcular es para el período 4, utilizando los datos históricos reales de los períodos 1, 2 y 3 (ya que es una media móvil de tres periodos). Luego, después del Período 4, podemos hacer una previsión para el Período 5, usando datos históricos de los Períodos 2, 3 y 4. Tenga en cuenta que el Período 1 se dejó caer, de ahí el término media móvil. Esta técnica asume entonces que los datos históricos reales en el pasado lejano, no son tan útiles como los datos históricos más actuales en hacer pronósticos. Antes de mostrar las fórmulas e ilustrando este ejemplo, permítanme presentar algunos símbolos. En este módulo, usaré el símbolo F t para representar un pronóstico para el período t. Por lo tanto, el pronóstico para el período 4 se mostraría como F 4. Utilizaré el símbolo Y t para representar el valor histórico real de la variable de interés, como la demanda, en el período t. Por lo tanto, la demanda real para el período 1 se mostraría como Y 1. Ahora llevar adelante los cálculos para una media móvil de tres periodos. El pronóstico para el período cuatro es: Generar el pronóstico para el período cinco: Continuaremos por los datos históricos hasta llegar al final del Período 12 y hacer nuestro pronóstico para el Período 13 basado en la demanda real de los Períodos 10, 11 y 12. Período 12 es el último período para el que tenemos datos, esto termina nuestros cálculos. Si alguien estaba interesado en hacer un pronóstico para los períodos 14, 15 y 16, así como el período 13, lo mejor que podría hacerse con el método de media móvil sería hacer que los pronósticos de período de salida sean los mismos que los pronósticos más actuales. Esto es cierto porque los métodos de media móvil no pueden crecer o responder a la tendencia. Esta es la principal razón por la que estos tipos de métodos se limitan a aplicaciones a corto plazo, tales como cuál es la demanda para el próximo período. Los cálculos de las previsiones se resumen en el cuadro 2.2.2. Dado que estamos interesados ​​en medir la magnitud del error para determinar la exactitud de la predicción, observe que cuadrado el error para eliminar los signos más y menos. Entonces, nosotros promediaremos los errores al cuadrado. Para calcular un promedio o una media, el primero es el tipo de error (SSE). Luego dividir por el número de errores para obtener el m ean s quared e rror (MSE). A continuación, tomar la raíz cuadrada del error para obtener el R oot M ean S quare E rror (RMSE). (1006.86) 31.73 A partir de su (s) curso (s) de estadística, reconocerá que el RMSE es simplemente la desviación estándar de los errores de pronóstico y el MSE es simplemente la varianza de Los errores de pronóstico. Al igual que la desviación estándar, cuanto más baja sea la RMSE, más precisa será la previsión. Por lo tanto, el RMSE puede ser muy útil para elegir entre modelos de pronóstico. También podemos usar el RMSE para hacer algún análisis de probabilidad. Dado que el RMSE es la desviación estándar del error de pronóstico, podemos tratar el pronóstico como la media de una distribución y aplicar la importante regla empírica. Suponiendo que los errores de pronóstico se distribuyen normalmente. Apuesto a que algunos de ustedes recuerdan esta regla: 68 de las observaciones en una distribución simétrica en forma de campana se encuentran dentro del área: media / - 1 desviación estándar 95 de las observaciones se encuentran dentro de: media / - 2 desviaciones estándar 99,7 (casi todos De las observaciones) se encuentran dentro de: media / - 3 desviaciones estándar Dado que la media es el pronóstico y la desviación estándar es el RMSE, podemos expresar la regla empírica de la siguiente manera: Se espera que 68 de los valores reales caigan dentro de: 1 RMSE 454,3 / - 31,73 423 a 486 95 Se espera que los valores reales se ajusten a: Pronóstico / - 2 RMSE 454,3 / - (231,73) 391 a 518 99,7 de los valores reales se espera que caigan dentro de: 454,3 / - (331,73) 359 a 549 Al igual que en el estudio de la media y la desviación estándar en la estadística descriptiva, esto es muy importante y tiene aplicaciones similares. Una cosa que podemos hacer es usar los 3 valores RMSE para determinar si tenemos datos atípicos en nuestros datos que necesitan ser reemplazados. Cualquier pronóstico que sea más de 3 RMSEs de la cifra real (o tiene un error mayor que el valor absoluto de 3 31.73 o 95 es un valor atípico. Este valor debe ser eliminado ya que infla el RMSE. La forma más sencilla de eliminar un outlier en Una serie de tiempo es reemplazarlo por la media del valor justo antes del outlier y justo después del outlier. Una otra muy mano de uso para el RMSE está en el establecimiento de stocks de seguridad en situaciones de inventario. Leva a cabo el 2 RMSE región de la Empírica para esta previsión: 2.5 95 2.5 359. 391. 454. 518. 549 Como las 95 medias de las observaciones caen entre 391 y 518, 5 de las observaciones caen por debajo de 391 y por encima de 518. Suponiendo que la distribución es en forma de campana, 2.5 De las observaciones caen por debajo de 391 y 2,5 caen por encima de 518. Otra forma de decir esto es que 97,5 de las observaciones caen por debajo de 518 (cuando se mide hasta el infinito negativo, aunque los datos reales deberían detenerse en 359.) La demanda real será de 518 (2 RMSEs por encima de la pronosticada), entonces al almacenar un inventario de 518 cubrirán 97.5 de las demandas reales que teóricamente podrían ocurrir. Es decir, están operando a un nivel de servicio al cliente de 97.5. En sólo 2,5 de los casos de demanda deben esperar una salida de existencias. Eso es muy pulido, no lo es. Siguiendo la misma metodología, si la empresa registra 549 artículos, o 3 RMSEs por encima del pronóstico, están prácticamente seguros de que no tendrán existencias a menos que ocurra algo realmente inusual (llamamos un valor atípico a las estadísticas). Por último, si la empresa almacena 486 ítems (2 RMSE por encima de lo previsto), tendrán un stock en 16 de los casos, o cubrirán 84 de las demandas que deberían ocurrir (100-16). En este caso, están operando a un nivel de servicio al cliente de 84. 16 68 16 359. 423. 454. 486. 549 Podríamos calcular otras probabilidades asociadas con otras áreas bajo la curva encontrando la probabilidad acumulativa para las puntuaciones z, z (observación-pronóstico) / RMSE (¿recuerdas que del curso stat (S)). Para nuestros fines aquí, sólo es importante ilustrar la aplicación del curso de estadística. Uso del Paquete de Software del Científico de Gestión Usaremos el Módulo de Predicción del Científico de Gestión para hacer las predicciones reales y los cálculos del RMSE. Para ilustrar el paquete del primer ejemplo, haga clic en Inicio / Programas / El Científico de Gestión / El Icono de Científico de Gestión / Continuar / Seleccione el Módulo 11 Previsión / OK / Archivo / Nuevo y está listo para cargar el problema de ejemplo. La siguiente pantalla de diálogo le pide que introduzca el número de períodos de tiempo - es decir, cuántas observaciones tiene - 12 en este caso. Haga clic en Aceptar . Y comience a introducir sus datos (sólo números y puntos decimales: la pantalla de diálogo no permitirá caracteres alfabéticos o comas). A continuación, haga clic en Solution / Solve / Moving Average e ingrese 3 donde solicita el número de periodos de movimiento. Debe obtener la siguiente solución: PRONÓSTICO CON MOTIVOS PROMEDIOS MOVILES MEDIA USOS 3 TIEMPOS PERIODO TIEMPO SERIE VALOR PREVISIÓN PREVISIÓN ERROR ERROR CUADRADO MEDIO 1.006.86 PREVISIÓN DEL PERIODO 13 454.33 Tenga en cuenta que el software devuelve el error cuadrático medio. Y para obtener el más útil Root Mean Square Error. Usted necesita tomar la raíz cuadrada del error cuadrado medio, 1006.83 en este caso. También tenga en cuenta que el software proporciona sólo un valor de pronóstico, reconociendo la limitación de los métodos de media móvil que limitan la proyección a un período de tiempo. Por último, tenga en cuenta que pongo los datos en una tabla html sólo para que pueda leerla mejor - esto sólo es necesario para ir desde el archivo OUT a html, no a una inserción de correo electrónico del archivo OUT o copiar un archivo OUT en un archivo Documento de Word. Al igual que con las soluciones de módulo de análisis de decisión, puede seleccionar Solución / Solución de impresión y seleccione Impresora para imprimir o Archivo de texto para guardar para insertar en un correo electrónico para mí o en un documento de Word. Antes de hacer un ejemplo más de media móvil, eche un vistazo a la columna de error de pronóstico. Tenga en cuenta que la mayoría de los errores son positivos. Dado que el error es igual al valor de la serie temporal real menos los valores pronosticados, los errores positivos significan que la demanda real es generalmente mayor que la demanda pronosticada - estamos bajo previsión. En este caso, nos falta una tendencia de crecimiento en los datos. Como se señaló anteriormente, las técnicas de media móvil no funcionan bien con datos de series de tiempo que muestran tendencias. La figura 2.2.2 ilustra el retraso que está presente cuando se utiliza la técnica del promedio móvil con una serie temporal que muestra una tendencia. Pronóstico de media móvil de cinco periodos Aquí está la solución de Management Scientist para usar 5 períodos para construir el pronóstico de media móvil. PRONÓSTICO CON MOTIVOS PROMEDIO LOS MOVIMIENTOS PROMEDIO USOS 5 TIEMPOS PERIODO TIEMPO SERIE VALOR PRONÓSTICO PRONÓSTICO ERROR ERROR DE LA CUADRADA MEDIA 1.349.37 LA PRONÓSTICA PARA EL PERÍODO 13 453.60 El RMSE para el promedio móvil de cinco períodos pronostica es 36.7, que es aproximadamente 16 peor que el Error del modelo de tres periodos. La razón de esto es que hay una tendencia de crecimiento en estos datos. A medida que aumentamos el número de períodos en el cálculo de la media móvil, el promedio comienza a retrasar la tendencia de crecimiento en mayores cantidades. Lo mismo sería cierto si los datos históricos mostraran una tendencia a la baja. El promedio móvil se retrasaría la tendencia y proporcionaría pronósticos que estarían por encima de los reales. Pausa y reflexión El método de pronóstico de media móvil es simple de usar y entender, y funciona bien con series de tiempo que no tienen componentes tendenciales, estacionales o cíclicos. La técnica requiere pocos datos, sólo las observaciones pasadas lo suficiente para que coincida con el número de períodos de tiempo en la media móvil. Los pronósticos generalmente se limitan a un período por delante. The technique does not work well with data that is not stationary - data that exhibits trend, seasonality, and/or cyclic patterns. One-Period Moving Average Forecast or the Naive Forecast A naive forecast would be one where the number of periods in the moving average is set equal to one. That is, the next forecast is equal to the last actual demand. Dont laugh This technique might be useful in the case of rapid growth trend the forecast would only lag the actual by one quarter or by one month, whatever the time period of interest. Of course, it would be much better to use a model that can make a trend projection if the trend represents a real move from a prior stationary pattern - we will get to that a bit later. Here is The Management Scientist result for the One-Period Moving Average Forecast. FORECASTING WITH MOVING AVERAGES THE MOVING AVERAGE USES 1 TIME PERIODS TIME PERIOD TIME SERIES VALUE FORECAST FORECAST ERROR THE MEAN SQUARE ERROR 969.91 THE FORECAST FOR PERIOD 13 473.00 This printout reflects a slightly lower RMSE than the three period moving average. That concludes our introduction to smoothing techniques by examining the class of smoothing methods called moving averages. The last smoothing method we will examine is called exponential smoothing , which is a form of a weighted moving average method. Exponential Smoothing This smoothing model became very popular with the production and inventory control community in the early days of computer applications because it did not need much memory, and allowed the manager some judgment input capability. That is, exponential smoothing includes a smoothing parameter that is used to weight either past forecasts (places emphasis on the average component) or the last observation (places emphasis on a rapid growth or decline trend component). The exponential smoothing model is: F t1 forecast of the time series for period t 1 Y t actual value of the time series in period t F t forecast of the time series for period t a smoothing constant or parameter (0 lt a lt 1) The smoothing constant or parameter, a . is shown as the Greek symbol alpha in the text - I am limited to alpha characters. In any case, if the smoothing constant is set at 1, the formula becomes the naive model we already studied: If the smoothing constant is set at 0, the formula becomes a weighted average model which gives most weight to the most recent forecast, with diminishing weight the farther back in the time series. Setting a can be done by trial and error, perhaps trying 0.1, 0.5 and 0.9, recording the RMSE for each run, then choosing the value of a that gives forecasts with the lowest RMSE. Some guidelines are, set a relatively high when there is a trend and you want the model to be responsive set a relatively low when there is just the irregular component so the model will not be responding to random movements. Lets do some exponential smoothing forecasts with a set at 0.6, relatively high. To get the model started, we begin by making a forecast for Period 2 simply based on the actual demand for Period 1 (first shown in Table 2.2.1, but often repeated with each demonstration). Then the first exponential smoothing forecast is actually made for Period 3, using information from Period 2. Thus t 2, t1 3, and F t1 F 21 F 3 . For this forecast, we need the actual demand for Period 2 (Y t Y 2 395), the forecast for Period 2 (F 2 398. The result is: The next forecast is for Period 4: This continues through the data until we get to the end of Period 12 and are ready to make our last forecast for Period 13. Note that all we have to maintain in historical data is the last forecast, the last actual demand and the value of the smoothing parameter - that is why the technique was so popular since it did not take much data. However, I do not subscribe to throwing away data files today - they should be archived for audit trail purposes. Anyway, the forecast for Period 13: Thankfully today, we have software like The Management Scientist to do the computations. To use The Management Scientist . select the Forecasting Module and load the data as previously described in the Three Period Moving Average demonstration. Next, click Solution/Solve/Exponential Smoothing and enter 0.6 where it asks for the value of the smoothing constant. Printout 2.2.4 illustrates the computer output with a smoothing constant of 0.6. FORECASTING WITH EXPONENTIAL SMOOTHING THE SMOOTHING CONSTANT IS 0.6 TIME PERIOD TIME SERIES VALUE FORECAST FORECAST ERROR THE MEAN SQUARE ERROR 871.52 THE FORECAST FOR PERIOD 13 459.74 This model provides a single forecast since, like the moving average techniques, it does not have the capability to address the trend component. The Root Mean Square Error is 29.52, (square root of the mean square error), or slightly better than the best results of the moving average and naive techniques. However, since the time series shows trend, we should be able to do much better with the trend projection model that is demonstrated next. Pause and Reflect The exponential smoothing technique is a simple technique that requires only five to ten historical observations to set the value of the smoothing parameter, then only the most recent actual observation and forecasting values. Forecasts are usually limited to one period ahead. The technique works best for time series that are stationary, that is, do not exhibit trend, seasonality and/or cyclic components. While historical data is generally used to fit the model - that is set the value of a . analysts may adjust that value in light of information reflecting changes to time series patterns. 2.3: Trend Projections When a time series reflects a shift from a stationary pattern to real growth or decline in the time series variable of interest (e. g. product demand or student enrollment at the university), that time series is demonstrating the trend component. The trend projection method of time series forecasting is based on the simple linear regression model. However, we generally do not require the rigid assumptions of linear regression (normal distribution of the error component, constant variance of the error component, and so forth), only that the past linear trend pattern will continue into the future. Note that is the trend pattern reflects a curve, we would have to rely on the more sophisticated features of multiple regression. The trend projection model is: T t Trend value for variable of interest in Period t b 0 Intercept of the trend projection line b 1 Slope, or rate of change, for the trend projection line While the text illustrates the computational formulas for the trend projection model, we will use The Management Scientist . To use The Management Scientist . select the Forecasting Module and load the data as previously described in the Three Period Moving Average demonstration. Next, click Solution/Solve/Trend Projection and enter 4 where it asks for Number of Periods to Forecast. Note, this is the first method that we have covered that the software asks this question, as it is assumed that all of the smoothing methods covered in this course are limited to forecasting just one period ahead. Printout 2.3.1 illustrates the trend projection printout from The Management Scientist . FORECASTING WITH LINEAR TREND THE LINEAR TREND EQUATION: T 367.121 7.776 t where T trend value of the time series in period t TIME PERIOD TIME SERIES VALUE FORECAST FORECAST ERROR THE MEAN SQUARE ERROR 449.96 THE FORECAST FOR PERIOD 13 468.21 THE FORECAST FOR PERIOD 14 475.99 THE FORECAST FOR PERIOD 15 483.76 THE FORECAST FOR PERIOD 16 491.54 Now we are getting somewhere with a forecast Note the mean square error is down to 449.96, giving a root mean square error of 21.2. Compared to the three period moving average RMSE of 31.7, we have a 33 improvement in the accuracy of the forecast over the relevant period. Now, if this were products such as automobiles, to achieve a customer service level of 97.5, we would create a safety stock of 2 times the RMSE above the forecast. So, for Period 13, the forecast plus 2 times the RMSE is 468.21 (2 21.2) or 511 cars. With the three period moving average method, the same customer service level inventory position would be: 454.3 (2 31.7) or 518. The safety stocks are 2 times 21 (42 for the trend projection) compared to 2 times 31.7 (63 for the three period moving average). This is a difference of 21 cars which could represent significant inventory carrying cost that could be avoided with the better forecasting method. Note that the software provides the trend equation, showing the intercept of 367.121 and the slope of 7.776. The slope is interpreted as in simple linear regression, demand goes up 7.776 per unit increase in time. This means that over the course of the time series, demand is increasing about 8 units a quarter. The intercept is only of interest in placing the trend projection line on a time series graph. I used the Chart Wizard in Excel to produce such a graph for the trend projection model: Note in this figure that demand falls below the trend projection line in Periods 3, 7 and 11. This is confirmed by looking at The Management Scientist computer Printout 2.3.1, where the errors are negative in the same periods. That is a pattern Since our data is quarterly, we would suspect that there is a seasonal pattern that results in a valley in the time series in every third quarter. To capture that pattern, we need the time series decomposition model that breaks down, analyzes and forecasts the seasonal as well as the trend components. We do that in the last section of this notes modules. Pause and Reflect The trend projection model is appropriate when the time series exhibits a linear trend component that is assumed to continue into the future. While rules of thumb suggest 20 observations to compute and test parameters of linear regression models, the simple trend projection model can be created with a minimum of 10 observations. The trend projection model is generally used to make multiple period forecasts for the short range, although some firms use it for the intermediate range as well. 2.4: Trend and Seasonal Components The last time series forecasting method that we examine is very powerful in that it can be used to make forecasts with time series that exhibit trend and seasonal components. The method is most often referred to as Time Series Decomposition, since the technique involves breaking down and analyzing a time series to identify the seasonal component in what are called seasonal indexes . The seasonal indexes are used to deseasonalize the time series. The deseasonalized time series is then used to identify the trend projection line used to make a deseasonalized projection. Lastly, seasonal indexes are used to seasonalize the trend projection. Lets illustrate how this works. As usual, we will use The Management Scientist to do our work after the illustration. The Seasonal Component The seasonal component may be found by using the centered moving average approach as presented in the text, or by using the season average to grand average approach described here. The latter is a simpler technique to understand, and comes very close to the centered moving average approach for most time series. The first step is to gather observations from the same quarter and find their average. I will repeat Table 2.2.1 as Table 2.4.1, so we can easily find the data: To compute the average demand for Quarter 1, we gather all observations for Quarter 1 and find their average, then repeat for Quarters 2, 3 and 4: Quarter 1 Average (398 410 465) / 3 424.3 Quarter 2 Average (395 402 460) / 3 419 Quarter 3 Average (361 378 430) / 3 389.7 Quarter 4 Average (400 440 473) / 3 437.7 The next step is to find the seasonal indexes for each quarter. This is done by dividing the quarterly average from above, by the grand average of all observations. Grand Average (398395361400410402378 440465460430473) / 12 417.7 Seasonal Index, Quarter 1 424.3 / 417.7 1.016 Seasonal Index, Quarter 2 419 / 417.7 1.003 Seasonal Index, Quarter 3 389.7 / 417.7 0.933 Seasonal Index, Quarter 4 437.7/ 417.7 1.048 These indexes are interpreted as follows. The overall demand for Quarter 4 is 4.5 percent above the average demand, thus making Quarter 4 a peak quarter. The overall demand for Quarter 3 is 6.7 percent below the average demand, thus making Quarter 3 an off peak quarter. This confirms our suspicion that demand is seasonal, and we have quantified the nature of the seasonality for planning purposes. Please note The Management Scientist software Printout 2.4.1 provides indexes of 1.046, 1.009, 0.920, and 1.025. The peaks and off peaks are similar to the above computations, although the specific values are a bit different. The centered moving average approach used by the software requires more data for computations - at least 4 or 5 repeats of the seasons, we only have 3 repeats (12 quarters gives 3 years of data). We will let the computer program do the next steps, but I will illustrate with a couple of examples. The next task is to deseasonalize the data. We do this by dividing each actual observation by the appropriate seasonal index. So for the first observation, where actual demand was 398, we note that it is a first quarter observation. The deseasonalized value for 398 is: Deseasonalized Y 1 398 / 1.016 391.7 Actual demand would have been 391.7 if there was no seasonal effects. Lets do four more: Deseasonalized Y 2 395 / 1.003 393.8 Deseasonalized Y 3 361 / 0.933 386.9 Deseasonalized Y 4 400 / 1.048 381.7 Deseasonalized Y 5 410 / 1.016 403.6 I am sure you have seen deseasonalized numbers in articles in the Wall Street Journal or other popular business press and journals. This is how those are computed. The next step is to find the trend line projection based on the deseasonalized observations. This trend line is a bit more accurate than the trend line projection based on the actual observations since than line contains seasonal variation. The Management Scientist gives the following trend line for this data: This trend line a close to the line we computed in Section 2.3, when the line was fit to the actual, rather than the seasonal data: T t 367 7.8 t. Once we have the trend line, making a forecast is easy. Lets say we want to make a forecast for time period 2. Of course, The Management Scientist does all this for us. To use The Management Scientist . select the Forecasting Module and load the data as previously described in the Three Period Moving Average demonstration. Next, click Solution/Solve/Trend and Seasonal . then enter 4 where it asks for number of seasons, and 4 where it asks for number of periods to forecast. - click OK to get the solution. Note that number of seasons is 4 for quarterly data, 12 for monthly data, and so forth. Here is the printout. Printout 2.4.1 FORECASTING WITH TREND AND SEASONAL COMPONENTS SEASON SEASONAL INDEX THE MEAN SQUARE ERROR 87.25 THE FORECAST FOR PERIOD 13 494.43 THE FORECAST FOR PERIOD 14 485.44 THE FORECAST FOR PERIOD 15 450.64 THE FORECAST FOR PERIOD 16 510.40 The Mean Square Error of 87.25, gives a root mean square error of 9.3, a spectacular improvement over the other techniques. A sketch of the actual and forecast data shows how well the trend and seasonal model can do at responding to the trend and the seasonal turn points. Note how the four period out forecast continues the response to both components. Pause and Reflect The trend and seasonal components method is appropriate when the time series exhibits a linear trend and seasonality. This model, compared to the others, does require significantly more historical data. It is suggested that you should have enough data to see at least four or five repetitions of the seasonal peaks and off peaks (with quarterly data, there should be 16 to 20 observations with monthly data, there should be 48 to 60 observations). Well, thats it to the introduction to times series forecasting material. Texts devoted entirely to this subject go into much more detail, of course. For example, there are exponential smoothing models that incorporate trend and time series decomposition models that incorporate the cyclic component. A good reference for these is Wilson and Keating, Business Forecasting . 2ª ed. Irwin (1994). Two parting thoughts. In each of the Pause and Reflect paragraphs, I gave suggestions for number of observations in the historical data base. There is always some judgment required here. While we need a lot of data to fit the trend and trend and seasonal models, a lot of data may mean going far into the past. When we go far into the past, the patterns in the data may be different, and the time series forecasting models assume that any patterns in the past will continue into the future (not the values of the past observations, but the patterns such as slope and seasonal indexes). When worded on forecasts for airport traffic, we would love to go back 10 years, but tourist and permanent resident business travel is different today than 10 years ago so we must balance the need for a lot of data with the assumption of forecasting. The second thought is to always remember to measure the accuracy of your models. We ended with a model that had a root mean square error that was a 75 improvement over the 5-period moving average. I know one company that always used a 5-period moving average for their sales forecasts - scary, isnt it You should be ready to tackle the assignment for Module 2, Forecasting Lost Sales, in the text, pp. 210-212. The case answers via e-mail and The Management Scientist computer output files are due February 10, 2001. If you want free review of your draft responses/output, please forward as a draft by Tuesday, February 6, 2001. Module ScheduleMoving average and exponential smoothing models As a first step in moving beyond mean models, random walk models, and linear trend models, nonseasonal patterns and trends can be extrapolated using a moving-average or smoothing model. La suposición básica detrás de los modelos de promedio y suavizado es que la serie temporal es localmente estacionaria con una media que varía lentamente. Por lo tanto, tomamos un promedio móvil (local) para estimar el valor actual de la media y luego usarlo como pronóstico para el futuro cercano. Esto puede considerarse como un compromiso entre el modelo medio y el modelo aleatorio-paseo-sin-deriva. La misma estrategia se puede utilizar para estimar y extrapolar una tendencia local. A moving average is often called a quotsmoothedquot version of the original series because short-term averaging has the effect of smoothing out the bumps in the original series. Al ajustar el grado de suavizado (el ancho de la media móvil), podemos esperar encontrar algún tipo de equilibrio óptimo entre el rendimiento de la media y los modelos de caminata aleatoria. El tipo más simple de modelo de promediación es el. Promedio móvil simple (igualmente ponderado): El pronóstico para el valor de Y en el tiempo t1 que se hace en el tiempo t es igual al promedio simple de las observaciones m más recientes: (Aquí y en otros lugares usaré el símbolo 8220Y-hat8221 para permanecer en pie Para un pronóstico de la serie de tiempo Y hecho a la fecha más temprana posible posible por un modelo dado). Este promedio se centra en el período t (m1) / 2, lo que implica que la estimación de la media local tiende a quedar rezagada detrás del Valor real de la media local de aproximadamente (m1) / 2 periodos. Por lo tanto, decimos que la edad media de los datos en el promedio móvil simple es (m1) / 2 en relación con el período para el cual se calcula el pronóstico: es la cantidad de tiempo por el cual los pronósticos tenderán a rezagarse detrás de los puntos de inflexión en el datos. Por ejemplo, si está promediando los últimos 5 valores, las previsiones serán de aproximadamente 3 períodos tarde en la respuesta a los puntos de inflexión. Tenga en cuenta que si m1, el modelo de media móvil simple (SMA) es equivalente al modelo de caminata aleatoria (sin crecimiento). Si m es muy grande (comparable a la longitud del período de estimación), el modelo SMA es equivalente al modelo medio. Como con cualquier parámetro de un modelo de pronóstico, es habitual ajustar el valor de k para obtener el mejor valor de los datos, es decir, los errores de predicción más pequeños en promedio. He aquí un ejemplo de una serie que parece presentar fluctuaciones aleatorias alrededor de una media de variación lenta. En primer lugar, vamos a tratar de encajar con un modelo de caminata al azar, que es equivalente a una media móvil simple de un término: El modelo de caminata aleatoria responde muy rápidamente a los cambios en la serie, pero al hacerlo, recoge gran parte del quotnoisequot en el Los datos (las fluctuaciones aleatorias), así como el quotsignalquot (la media local). Si en lugar de eso intentamos una media móvil simple de 5 términos, obtendremos un conjunto de previsiones más suaves: El promedio móvil simple a 5 terminos produce errores significativamente menores que el modelo de caminata aleatoria en este caso. La edad promedio de los datos de esta previsión es de 3 ((51) / 2), de modo que tiende a quedar a la zaga de los puntos de inflexión en aproximadamente tres períodos. (Por ejemplo, parece haber ocurrido una recesión en el período 21, pero las previsiones no giran hasta varios periodos más tarde). Obsérvese que los pronósticos a largo plazo del modelo SMA son una línea recta horizontal, al igual que en la caminata aleatoria modelo. Por lo tanto, el modelo SMA asume que no hay tendencia en los datos. Sin embargo, mientras que las previsiones del modelo de caminata aleatoria son simplemente iguales al último valor observado, las previsiones del modelo SMA son iguales a un promedio ponderado de valores recientes. Los límites de confianza calculados por Statgraphics para los pronósticos a largo plazo de la media móvil simple no se amplían a medida que aumenta el horizonte de pronóstico. Esto obviamente no es correcto Desafortunadamente, no hay una teoría estadística subyacente que nos diga cómo los intervalos de confianza deberían ampliarse para este modelo. Sin embargo, no es demasiado difícil calcular estimaciones empíricas de los límites de confianza para las previsiones a más largo plazo. Por ejemplo, podría configurar una hoja de cálculo en la que el modelo SMA se utilizaría para pronosticar dos pasos adelante, tres pasos adelante, etc. dentro de la muestra de datos históricos. A continuación, podría calcular las desviaciones estándar de los errores en cada horizonte de pronóstico y, a continuación, construir intervalos de confianza para pronósticos a más largo plazo sumando y restando múltiplos de la desviación estándar apropiada. Si intentamos una media móvil sencilla de 9 términos, obtendremos pronósticos aún más suaves y más de un efecto rezagado: La edad promedio es ahora de 5 períodos ((91) / 2). Si tomamos una media móvil de 19 términos, la edad promedio aumenta a 10: Obsérvese que, de hecho, las previsiones están ahora rezagadas detrás de los puntos de inflexión en aproximadamente 10 períodos. Qué cantidad de suavizado es la mejor para esta serie Aquí hay una tabla que compara sus estadísticas de error, incluyendo también un promedio de 3 términos: El modelo C, la media móvil de 5 términos, produce el valor más bajo de RMSE por un pequeño margen sobre los 3 A término y 9 promedios, y sus otras estadísticas son casi idénticas. Por lo tanto, entre los modelos con estadísticas de error muy similares, podemos elegir si preferiríamos un poco más de capacidad de respuesta o un poco más de suavidad en las previsiones. El modelo de media móvil simple descrito anteriormente tiene la propiedad indeseable de que trata las últimas k observaciones por igual e ignora por completo todas las observaciones precedentes. (Volver al principio de la página.) Browns Simple Exponential Smoothing Intuitivamente, los datos pasados ​​deben ser descontados de una manera más gradual - por ejemplo, la observación más reciente debería tener un poco más de peso que la segunda más reciente, y la segunda más reciente debería tener un poco más de peso que la tercera más reciente, y pronto. El modelo de suavizado exponencial simple (SES) lo logra. Sea 945 una constante quotsmoothingquot (un número entre 0 y 1). Una forma de escribir el modelo es definir una serie L que represente el nivel actual (es decir, el valor medio local) de la serie, tal como se estimó a partir de los datos hasta el presente. El valor de L en el tiempo t se calcula recursivamente a partir de su propio valor anterior como este: Así, el valor suavizado actual es una interpolación entre el valor suavizado anterior y la observación actual, donde 945 controla la proximidad del valor interpolado al valor más reciente observación. El pronóstico para el siguiente período es simplemente el valor suavizado actual: Equivalentemente, podemos expresar el próximo pronóstico directamente en términos de previsiones anteriores y observaciones previas, en cualquiera de las siguientes versiones equivalentes. En la primera versión, la previsión es una interpolación entre la previsión anterior y la observación anterior: En la segunda versión, la siguiente previsión se obtiene ajustando la previsión anterior en la dirección del error anterior por una cantidad fraccionada de 945. es el error hecho en Tiempo t En la tercera versión, el pronóstico es una media móvil exponencialmente ponderada (es decir, descontada) con el factor de descuento 1-945: La versión de interpolación de la fórmula de pronóstico es la más simple de usar si está implementando el modelo en una hoja de cálculo: se ajusta en un Célula única y contiene referencias de celdas que apuntan a la previsión anterior, la observación anterior y la celda donde se almacena el valor de 945. Tenga en cuenta que si 945 1, el modelo SES es equivalente a un modelo de caminata aleatoria (sin crecimiento). Si 945 0, el modelo SES es equivalente al modelo medio, asumiendo que el primer valor suavizado se establece igual a la media. La edad promedio de los datos en el pronóstico de suavización exponencial simple es de 1/945 en relación con el período para el cual se calcula la predicción. (Esto no se supone que sea obvio, pero se puede demostrar fácilmente mediante la evaluación de una serie infinita.) Por lo tanto, el pronóstico promedio móvil simple tiende a quedar rezagado detrás de puntos de inflexión en aproximadamente 1/945 períodos. Por ejemplo, cuando 945 0.5 el retraso es 2 períodos cuando 945 0.2 el retraso es 5 períodos cuando 945 0.1 el retraso es 10 períodos, y así sucesivamente. Para una edad promedio dada (es decir, la cantidad de retraso), el simple suavizado exponencial (SES) pronosticado es algo superior a la predicción del promedio móvil simple (SMA) porque coloca relativamente más peso en la observación más reciente - i. e. Es un poco más sensible a los cambios ocurridos en el pasado reciente. Por ejemplo, un modelo SMA con 9 términos y un modelo SES con 945 0.2 tienen una edad promedio de 5 para los datos de sus pronósticos, pero el modelo SES pone más peso en los 3 últimos valores que el modelo SMA y en el modelo SMA. Otra ventaja importante del modelo SES sobre el modelo SMA es que el modelo SES utiliza un parámetro de suavizado que es variable continuamente, por lo que puede optimizarse fácilmente Utilizando un algoritmo quotsolverquot para minimizar el error cuadrático medio. El valor óptimo de 945 en el modelo SES de esta serie resulta ser 0.2961, como se muestra aquí: La edad promedio de los datos de esta previsión es de 1 / 0,2961 3,4 períodos, que es similar a la de un movimiento simple de 6 términos promedio. Los pronósticos a largo plazo del modelo SES son una línea recta horizontal. Como en el modelo SMA y el modelo de caminata aleatoria sin crecimiento. Sin embargo, tenga en cuenta que los intervalos de confianza calculados por Statgraphics ahora divergen de manera razonable y que son sustancialmente más estrechos que los intervalos de confianza para el modelo de caminata aleatoria. El modelo SES asume que la serie es algo más predecible que el modelo de caminata aleatoria. Un modelo SES es en realidad un caso especial de un modelo ARIMA. Por lo que la teoría estadística de los modelos ARIMA proporciona una base sólida para el cálculo de los intervalos de confianza para el modelo SES. En particular, un modelo SES es un modelo ARIMA con una diferencia no estacional, un término MA (1) y ningún término constante. Conocido también como modelo quotARIMA (0,1,1) sin constantequot. El coeficiente MA (1) en el modelo ARIMA corresponde a la cantidad 1-945 en el modelo SES. Por ejemplo, si se ajusta un modelo ARIMA (0,1,1) sin constante a la serie analizada aquí, el coeficiente MA estimado (1) resulta ser 0.7029, que es casi exactamente un menos 0.2961. Es posible añadir la suposición de una tendencia lineal constante no nula a un modelo SES. Para ello, basta con especificar un modelo ARIMA con una diferencia no estacional y un término MA (1) con una constante, es decir, un modelo ARIMA (0,1,1) con constante. Las previsiones a largo plazo tendrán entonces una tendencia que es igual a la tendencia media observada durante todo el período de estimación. No puede hacerlo junto con el ajuste estacional, ya que las opciones de ajuste estacional están deshabilitadas cuando el tipo de modelo está ajustado a ARIMA. Sin embargo, puede agregar una tendencia exponencial a largo plazo constante a un modelo de suavizado exponencial simple (con o sin ajuste estacional) utilizando la opción de ajuste de inflación en el procedimiento de Pronóstico. La tasa apropiada de inflación (crecimiento porcentual) por período puede estimarse como el coeficiente de pendiente en un modelo de tendencia lineal ajustado a los datos en conjunción con una transformación de logaritmo natural o puede basarse en otra información independiente sobre las perspectivas de crecimiento a largo plazo . (Regreso al inicio de la página.) Browns Linear (es decir, doble) Suavizado exponencial Los modelos SMA y SES suponen que no hay ninguna tendencia de ningún tipo en los datos (que normalmente está bien o al menos no es demasiado malo para 1- Avance anticipado cuando los datos son relativamente ruidosos), y se pueden modificar para incorporar una tendencia lineal constante como se muestra arriba. ¿Qué pasa con las tendencias a corto plazo? Si una serie muestra una tasa de crecimiento variable o un patrón cíclico que se destaca claramente contra el ruido, y si hay una necesidad de pronosticar más de un período, la estimación de una tendencia local también podría ser un problema. El modelo de suavizado exponencial simple puede ser generalizado para obtener un modelo lineal de suavizado exponencial (LES) que calcula las estimaciones locales de nivel y tendencia. El modelo de tendencia más simple que varía en función del tiempo es el modelo lineal de suavizado exponencial de Browns, que utiliza dos series suavizadas diferentes centradas en diferentes momentos del tiempo. La fórmula de predicción se basa en una extrapolación de una línea a través de los dos centros. (Una versión más sofisticada de este modelo, Holt8217s, se discute a continuación). La forma algebraica del modelo de suavizado exponencial lineal de Brown8217s, como la del modelo de suavizado exponencial simple, puede expresarse en varias formas diferentes pero equivalentes. La forma estándar de este modelo se expresa usualmente de la siguiente manera: Sea S la serie de suavizado simple obtenida aplicando el suavizado exponencial simple a la serie Y. Es decir, el valor de S en el periodo t está dado por: (Recuérdese que, Exponencial, esta sería la previsión para Y en el período t1). Entonces, Squot denote la serie doblemente suavizada obtenida aplicando el suavizado exponencial simple (usando el mismo 945) a la serie S: Finalmente, la previsión para Y tk. Para cualquier kgt1, viene dado por: Esto produce e 1 0 (es decir, trucar un poco y dejar que el primer pronóstico sea igual a la primera observación real), y e 2 Y 2 8211 Y 1. Después de lo cual las previsiones se generan usando la ecuación anterior. Esto produce los mismos valores ajustados que la fórmula basada en S y S si estos últimos se iniciaron usando S 1 S 1 Y 1. Esta versión del modelo se utiliza en la página siguiente que ilustra una combinación de suavizado exponencial con ajuste estacional. Holt8217s Linear Exponential Smoothing Brown8217s El modelo LES calcula las estimaciones locales de nivel y tendencia al suavizar los datos recientes, pero el hecho de que lo haga con un solo parámetro de suavizado impone una restricción en los patrones de datos que puede encajar: el nivel y la tendencia No se les permite variar a tasas independientes. El modelo LES de Holt8217s aborda este problema incluyendo dos constantes de suavizado, una para el nivel y otra para la tendencia. En cualquier momento t, como en el modelo Brown8217s, existe una estimación L t del nivel local y una estimación T t de la tendencia local. Aquí se calculan recursivamente a partir del valor de Y observado en el instante t y de las estimaciones previas del nivel y de la tendencia por dos ecuaciones que les aplican el suavizado exponencial separadamente. Si el nivel estimado y la tendencia en el tiempo t-1 son L t82091 y T t-1. Respectivamente, entonces la previsión de Y tshy que habría sido hecha en el tiempo t-1 es igual a L t-1 T t-1. Cuando se observa el valor real, la estimación actualizada del nivel se calcula recursivamente interpolando entre Y tshy y su pronóstico, L t-1 T t-1, utilizando pesos de 945 y 1-945. El cambio en el nivel estimado, Es decir L t 8209 L t82091. Puede interpretarse como una medida ruidosa de la tendencia en el tiempo t. La estimación actualizada de la tendencia se calcula recursivamente mediante la interpolación entre L t 8209 L t82091 y la estimación anterior de la tendencia, T t-1. Utilizando los pesos de 946 y 1-946: La interpretación de la constante de suavizado de tendencia 946 es análoga a la de la constante de suavizado de nivel 945. Los modelos con valores pequeños de 946 asumen que la tendencia cambia muy lentamente con el tiempo, mientras que los modelos con 946 más grandes suponen que está cambiando más rápidamente. Un modelo con una gran 946 cree que el futuro lejano es muy incierto, porque los errores en la estimación de la tendencia son muy importantes cuando se pronostica más de un período por delante. Las constantes de suavizado 945 y 946 se pueden estimar de la manera habitual minimizando el error cuadrático medio de los pronósticos de 1 paso adelante. Cuando esto se hace en Statgraphics, las estimaciones resultan ser 945 0.3048 y 946 0.008. El valor muy pequeño de 946 significa que el modelo supone muy poco cambio en la tendencia de un período al siguiente, por lo que básicamente este modelo está tratando de estimar una tendencia a largo plazo. Por analogía con la noción de la edad media de los datos que se utilizan para estimar el nivel local de la serie, la edad media de los datos que se utilizan para estimar la tendencia local es proporcional a 1/946, aunque no exactamente igual a eso. En este caso, resulta ser 1 / 0.006 125. Esto no es un número muy preciso en la medida en que la precisión de la estimación de 946 es realmente de 3 decimales, pero es del mismo orden general de magnitud que el tamaño de la muestra de 100 , Por lo que este modelo está promediando bastante historia en la estimación de la tendencia. La gráfica de pronóstico siguiente muestra que el modelo LES calcula una tendencia local ligeramente mayor al final de la serie que la tendencia constante estimada en el modelo SEStrend. Además, el valor estimado de 945 es casi idéntico al obtenido ajustando el modelo SES con o sin tendencia, por lo que este es casi el mismo modelo. Ahora, ¿se ven como pronósticos razonables para un modelo que se supone que está estimando una tendencia local? Si observa esta gráfica, parece que la tendencia local se ha vuelto hacia abajo al final de la serie. Lo que ha ocurrido Los parámetros de este modelo Se han estimado minimizando el error al cuadrado de las previsiones de un paso adelante, y no las previsiones a largo plazo, en cuyo caso la tendencia no hace mucha diferencia. Si todo lo que usted está mirando son errores de un paso adelante, no está viendo la imagen más grande de las tendencias sobre (digamos) 10 o 20 períodos. Con el fin de obtener este modelo más en sintonía con la extrapolación de nuestro ojo de los datos, podemos ajustar manualmente la tendencia de suavizado constante de modo que utiliza una base más corta para la estimación de tendencia. Por ejemplo, si elegimos establecer 946 0.1, la edad promedio de los datos utilizados para estimar la tendencia local es de 10 períodos, lo que significa que estamos promediando la tendencia en los últimos 20 períodos aproximadamente. Here8217s lo que el pronóstico gráfico parece si fijamos 946 0.1 mientras que mantener 945 0.3. Esto parece intuitivamente razonable para esta serie, aunque probablemente sea peligroso extrapolar esta tendencia en más de 10 periodos en el futuro. ¿Qué pasa con las estadísticas de errores? Aquí hay una comparación de modelos para los dos modelos mostrados arriba, así como tres modelos SES. El valor óptimo de 945 para el modelo SES es de aproximadamente 0,3, pero se obtienen resultados similares (con un poco más o menos de capacidad de respuesta, respectivamente) con 0,5 y 0,2. (A) Holts lineal exp. Alisamiento con alfa 0.3048 y beta 0.008 (B) Holts linear exp. Alisamiento con alfa 0.3 y beta 0.1 (C) Suavizado exponencial simple con alfa 0.5 (D) Alisamiento exponencial simple con alfa 0.3 (E) Suavizado exponencial simple con alfa 0.2 Sus estadísticas son casi idénticas, por lo que realmente no podemos hacer la elección sobre la base De errores de pronóstico de un paso adelante en la muestra de datos. Tenemos que recurrir a otras consideraciones. Si creemos firmemente que tiene sentido basar la estimación de tendencia actual en lo que ha ocurrido durante los últimos 20 períodos, podemos hacer un caso para el modelo LES con 945 0.3 y 946 0.1. Si queremos ser agnósticos acerca de si hay una tendencia local, entonces uno de los modelos SES podría ser más fácil de explicar y también daría más pronósticos intermedios para los próximos 5 o 10 períodos. (Volver al principio de la página.) Qué tipo de tendencia-extrapolación es la mejor: horizontal o lineal La evidencia empírica sugiere que, si los datos ya han sido ajustados (si es necesario) para la inflación, puede ser imprudente extrapolar lineal a corto plazo Tendencias en el futuro. Las tendencias evidentes hoy en día pueden desacelerarse en el futuro debido a causas variadas como la obsolescencia del producto, el aumento de la competencia y las caídas o repuntes cíclicos en una industria. Por esta razón, el suavizado exponencial simple a menudo realiza mejor fuera de la muestra de lo que de otra manera podría esperarse, a pesar de su extrapolación horizontal de tendencia horizontal. Las modificaciones de la tendencia amortiguada del modelo de suavizado exponencial lineal también se usan a menudo en la práctica para introducir una nota de conservadurismo en sus proyecciones de tendencia. El modelo LES con tendencia amortiguada se puede implementar como un caso especial de un modelo ARIMA, en particular, un modelo ARIMA (1,1,2). Es posible calcular intervalos de confianza en torno a los pronósticos a largo plazo producidos por modelos de suavizado exponencial, al considerarlos como casos especiales de modelos ARIMA. El ancho de los intervalos de confianza depende de (i) el error RMS del modelo, (ii) el tipo de suavizado (simple o lineal) (iii) el valor (S) de la (s) constante (s) de suavizado y (iv) el número de periodos por delante que está pronosticando. En general, los intervalos se extienden más rápidamente a medida que el 945 se hace más grande en el modelo SES y se extienden mucho más rápido cuando se usa lineal en lugar de simple suavizado. Este tema se discute más adelante en la sección de modelos de ARIMA de las notas. (Volver al inicio de la página.)

No comments:

Post a Comment